Course Outline

MATS4002
Design with Advanced Ceramics
Materials Science and Engineering
Science
T1, 2019
1. Staff

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Email</th>
<th>Consultation times and locations</th>
<th>Contact Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Convenor</td>
<td>Dr Danyang Wang</td>
<td>dy.wang@unsw.edu.au</td>
<td>Room 239, School of Materials Science and Engineering (Building E10), by appointment</td>
<td>Phone: 9385 7170</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dr Pramod Koshy</td>
<td>kosh@unsw.edu.au</td>
<td>Room 220, School of Materials Science and Engineering (Building E10), by appointment</td>
<td>Phone: 9385 6038</td>
</tr>
</tbody>
</table>

2. Course information

Units of credit: 6
Pre-requisite(s): MATS3002

Teaching times and locations:

<table>
<thead>
<tr>
<th>Day</th>
<th>Lecture</th>
<th>Lecture</th>
<th>Lecture</th>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
<td>Tuesday</td>
<td>Thursday</td>
<td>Friday</td>
<td>Friday</td>
</tr>
<tr>
<td>Location</td>
<td>Central Lecture Block 1</td>
<td>Chemical Sciences M17</td>
<td>Chemical Sciences M18</td>
<td>See Moodle</td>
</tr>
<tr>
<td>Time</td>
<td>14:00-16:00</td>
<td>16:00-18:00</td>
<td>16:00-18:00</td>
<td>16:00-18:00</td>
</tr>
<tr>
<td>Weeks</td>
<td>1-10</td>
<td>1-4, 6-9</td>
<td>1-4</td>
<td>6-8, 10</td>
</tr>
</tbody>
</table>

2.1 Course summary

Oxide and non-oxide advanced ceramics, design parameters, structure/microstructure-processing-properties relations, thermal properties and materials, chemical (corrosion) properties and materials, mechanical properties and materials, thermomechanical properties and materials, tribological properties and materials, electromechanical properties and materials, magnetic properties and materials, electrical properties and materials, and optoelectronic properties and materials.
2.2 Course aims

The objective of the course is to familiarise students with the full range of materials, properties, applications, and design requirements necessary for the utilisation of high-performance ceramics in modern technological functions. The main design parameters that will be understood are defined by the thermal, chemical, mechanical, thermomechanical, tribological, electromechanical, magnetic, electrical, and optoelectronic properties of advanced ceramics. This will assist in building improved understanding of real-life performance scenarios for products made using these materials.

2.3 Course learning outcomes (CLO)

At the successful completion of this course you (the student) should be able to:

1. Demonstrate an understanding the properties and characteristics of ceramics for high-performance applications.
2. Assess the range of typical properties of these materials with the aim of utilising them in high-demand designs requiring specific mechanical, thermal, electrical, and other properties.
3. Demonstrate an understanding of how to manipulate ceramic microstructures through processing in order to obtain optimal properties for different applications.

2.4 Relationship between course and program learning outcomes and assessments

<table>
<thead>
<tr>
<th>Course Learning Outcome (CLO)</th>
<th>LO Statement</th>
<th>Program Learning Outcome (PLO)</th>
<th>Related Tasks & Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLO 1</td>
<td>Demonstrate…</td>
<td>1.3, 1.4, 2.2, 3.2 & 3.4</td>
<td>2 & 3</td>
</tr>
<tr>
<td>CLO 2</td>
<td>Assess…</td>
<td>1.3, 1.4, 2.2, 3.2, 3.4 & 3.6</td>
<td>1, 2, 3 & 4</td>
</tr>
<tr>
<td>CLO 3</td>
<td>Demonstrate…</td>
<td>1.3, 1.4 & 3.4</td>
<td>1, 2, 3 & 4</td>
</tr>
</tbody>
</table>

3. Strategies and approaches to learning

3.1 Learning and teaching activities

(Based on UNSW Learning Guidelines)

- Students are actively engaged in the learning process.
 It is expected that, in addition to attending classes, students read, write, discuss, and are engaged in solving problems on the thermal and mechanical properties of materials, and in analysis and evaluation of materials' and devices' performance using electron/photon-related properties.
- Effective learning is supported by a climate of inquiry where students feel appropriately challenged.
Problems involving electron theory are challenging; students will be given assignments that will motivate deep analysis of various physical phenomena in materials science and engineering.

- Learning is more effective when students’ prior experience and knowledge are recognised and built on.
 - This course is built on prior courses in ceramic processing.
- Students become more engaged in the learning process if they can see the relevance of their studies to professional and disciplinary contexts

Students will be asked to analyse the critical role of functional and structural properties in the application of advanced ceramics and design of novel devices.

Lectures: The core concepts will be taught in lectures, students will have access to the lectures notes before class for annotation during the lecture. Students will be engaged in the learning process through class discussions and problem-solving questions independently and working together with partners and groups.

Labs: Experimental techniques and procedures will be taught through laboratories classes and laboratory reports following the class. Students will actively complete the experiments gaining experience of important materials testing and characterisation techniques. Students will be able to reflect on the experiments and learn to process data through the lab reports after class.

3.2 Expectations of students

- Students must attend at least 80% of all classes with the expectation that students only miss classes due to illness or unforeseen circumstances
- Students must read through lecture notes and lab sheets prior to class
- During class, students are expected to engage actively in class discussions
- Students should work through lecture, tutorial and textbook questions
- Students should read through the relevant chapters of the prescribed textbook.
- Students should complete all assessment tasks and submit them on time.
- Students are expected to participate in online discussions through the Moodle page
4. Course schedule and structure

This course consists of 52 hours of class contact hours. You are expected to take an additional 98 hours of non-class contact hours to complete assessments, readings and exam preparation.

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction
Introduction to SMART materials and SMART structures
Ferroelectric ceramic and their applications</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ferroelectric ceramic and their applications
Piezoelectric ceramics</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Piezoelectric ceramics
Electro-optic Ceramics and Fibre-Optic Sensors</td>
<td>Formative in-class quiz</td>
</tr>
<tr>
<td>4</td>
<td>Magnetic ceramics and their applications</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Introduction to Advanced Ceramic Processing</td>
<td>Reports and presentations
Mid-session exam</td>
</tr>
<tr>
<td>6</td>
<td>Mechanical Properties of Ceramics
Mechanical/Tribological Properties of Ceramics</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Mechanical/Tribological Properties of Ceramics
Thermal Properties of Ceramics</td>
<td>Labs</td>
</tr>
<tr>
<td>8</td>
<td>Thermal Properties of Ceramics</td>
<td>Labs</td>
</tr>
<tr>
<td>9</td>
<td>Chemical (corrosion) Properties of Ceramics
Biological Properties of Ceramics</td>
<td>Labs, Short assignments</td>
</tr>
<tr>
<td>10</td>
<td>Revision</td>
<td></td>
</tr>
</tbody>
</table>
5. Assessment

5.1 Assessment tasks

<table>
<thead>
<tr>
<th>Assessment task</th>
<th>Description</th>
<th>Weight</th>
<th>Due date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report and presentation:</td>
<td>Students are required to conduct research into a mini-project about the smart materials/structures and their applications. The topics should be within the scope of electrical, electronic, optical and magnetic properties. It is designed to introduce the students to a broader range of functionalities and practical applications of state-of-the-art ceramics and related materials and to provide formative assessment of the learning process.</td>
<td>20%</td>
<td>Week 5</td>
</tr>
<tr>
<td>Short assignments:</td>
<td>Students will be required to conduct research on a topic involving materials, properties, performance, of advanced ceramic products in terms of their mechanical / tribological / thermal / thermomechanical / corrosion / biological properties for further learning on current and relevant applications and issues related to the properties and processing of these materials and formative assessment of the learning process.</td>
<td>15%</td>
<td>Week 9</td>
</tr>
<tr>
<td>Mid-session exam:</td>
<td>Electrical, electromechanical, magnetic and optoelectronic properties, and materials</td>
<td>30%</td>
<td>Week 5</td>
</tr>
<tr>
<td>Final Exam:</td>
<td>Mechanical, tribological, thermal, thermomechanical, chemical, and biological properties</td>
<td>35%</td>
<td>Final exam period</td>
</tr>
</tbody>
</table>

Further information

UNSW grading system: https://student.unsw.edu.au/grades

UNSW assessment policy: https://student.unsw.edu.au/assessment

5.2 Assessment criteria and standards

Assessment criteria and standards for each assessment tasks are available on the course Moodle page.

5.3 Submission of assessment tasks

- UNSW operates under a Fit to Sit/ Submit rule for all assessments. If a student wishes to submit an application for special consideration for an exam or assessment, the application must be submitted prior to the start of the exam or before an assessment is submitted. If a student sits the exam/ submits an assignment, they are declaring themselves well enough to do so. Information on this process can be found here: https://student.unsw.edu.au/special-consideration. Medical certificates or other appropriate documents must be included. Students should also advise the lecturer of the situation.

- In the absence of a request for special consideration, the maximal allowable extension for a late completion of assessment tasks is 7 days (includes non-working days) from the due date for that
task. The penalty for late submission is a deduction of 10%/day of the total mark for each day, or part thereof after the due date.

- Students unable to submit assignments on time or attend the mid-session quizzes or final exams on health grounds should make a request for special consideration. Information on this process can be found here: https://student.unsw.edu.au/special-consideration. Medical certificates or other appropriate documents must be included. Students should also advise the lecturer of the situation.

- Unless otherwise specified in the task criteria, all assignments must be uploaded via Moodle prior to the due date for submission.

- Students who have a disability that requires some adjustment in their teaching or learning environment are encouraged to discuss their study needs with the course coordinator prior to, or at the commencement of, their course, or with the Equity Officer (Disability) in the Equity and Diversity Unit: https://student.unsw.edu.au/disability. Early notification is essential to enable any necessary adjustments to be made.

- Rules governing conduct during exams are given at: https://student.unsw.edu.au/exam-rules

5.4. Feedback on assessment

Assignments: Feedback will be given two weeks after submission of the assignment and take the form of the mark for the assignment, overall comments on how the class performed, any common areas that were not answered correctly. Additionally, personal feedback and how each student performed may be given.

Midsession exams: Students will receive their marked exams indicating what questions were answered correctly and incorrectly. Overall comments and worked solutions may be provided to the class.

Final exam: Students will receive their final mark.

6. Academic integrity, referencing and plagiarism

Referencing is a way of acknowledging the sources of information that you use to research your assignments. You need to provide a reference whenever you draw on someone else's words, ideas or research. Not referencing other people's work can constitute plagiarism.

Further information about referencing styles can be located at https://student.unsw.edu.au/referencing

Academic integrity is fundamental to success at university. Academic integrity can be defined as a commitment to six fundamental values in academic pursuits: honesty, trust, fairness, respect, responsibility and courage. At UNSW, this means that your work must be your own, and others’ ideas should be appropriately acknowledged. If you don’t follow these rules, plagiarism may be detected in your work.

Further information about academic integrity and plagiarism can be located at:

- The Current Students site https://student.unsw.edu.au/plagiarism, and
- The ELISE training site http://subjectguides.library.unsw.edu.au/elise/presenting

The Conduct and Integrity Unit provides further resources to assist you to understand your conduct obligations as a student: https://student.unsw.edu.au/conduct.

7. Readings and resources

- Y. Xu, Ferroelectric Materials and Their Applications, North-Holland, 1991

8. Administrative matters

School Office: Room 137, Building E10 School of Materials Science and Engineering
School Website: http://www.materials.unsw.edu.au/
Faculty Office: Robert Webster Building, Room 128
Faculty Website: http://www.science.unsw.edu.au/

9. Additional support for students

- The Current Students Gateway: https://student.unsw.edu.au/
- Academic Skills and Support: https://student.unsw.edu.au/academic-skills
- Student Wellbeing, Health and Safety: https://student.unsw.edu.au/wellbeing
- Disability Support Services: https://student.unsw.edu.au/disability-services
- UNSW IT Service Centre: https://www.it.unsw.edu.au/students/index.html